Orchestration of circadian timing by macromolecular protein assemblies.
Partch CL
Journal of Molecular Biology – Special issue on Molecular mechanisms underlying circadian regulation
Eds. Eva Wolf and Achim Kramer
​
Coming soon: link to review online

The CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1.
Parico GCG, Perez I, Fribourgh JL, Hernandez BN, Lee HW, and Partch CL
bioRxiv https://doi.org/10.1011/758714
​
Coming soon: chemical shift assignments for the human CRY1 tail

Dynamics at the serine loop underlie differential ability of cryptochromes for CLOCK:BMAL1 to control circadian timing.
Fribourgh JL*, Srivastava A*, Sandate CR*, Michael AK, Hsu PL, Rakers C, Nguyen LT, Torgrimson MR, Parico GCG, Tripathi S, Zheng N, Lander GC, Hirota T, Tama F, and Partch CL
eLIFE (2020) –– coming soon!
(original version on bioRxiv https://doi.org/10.1011/740464)
​
PDB coordinates for mouse CRY1 PHR:PER2 CBD structure – 6OF7
Coordinates for the top HADDOCK model available upon request.

Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch.
Philpott JM*, Narasimamurthy R*, Ricci CG*, Freeberg AM, Hunt SR, Yee LE, Pelofsky RS, Tripathi S, Virshup DM, and Partch CL
eLIFE
(original version on bioRxiv https://doi.org/10.1011/734624)
​
Featured in:
-
UCSC Press: Molecular switch mechanism explains how mutations shorten biological clocks, Tim Stephens
​
PDB coordinates for CK1δ kinase domain structures:
wild-type in anion-free crystallization conditions – 6PXO
tau mutant (R178C) – 6PXN
anion-binding site 2 mutant (R171E) – 6PXP

Regulating behavior with the flip of a translational switch.
Ceh-Pavia E and Partch CL
Proceedings of the National Academy of Science USA
​
Check out the fantastic paper outlining use of genetic code expansion and noncanonical amino acids to regulate protein expression and circadian behavior from the Hastings and Chin labs here.

CK1d/e protein kinase primes the PER2 circadian phosphoswitch.
Narasimamurthy R, Hunt SR, Lu Y, Fustin J-M, Okamura H, Partch CL,
Forger DB, Kim JK, Virhup DM
Proceedings of the National Academy of Science USA
​
Chemical shift assignments for mouse PER2 FASP peptide
​
Check out this great paper from the Okamura lab on a related topic!

Structure, function, and mechanism of the core circadian clock in cyanobacteria.
Swan JA, Golden SS, LiWang A, Partch CL
Journal of Biological Chemistry
Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms.
Fong JC, Rogers A, Michael AK, Parsley NC, Cornell WC, Lin YC, Singh PK, Hartmann R, Drescher K, Vinogradov E, Dietrich LE, Partch CL, Yildiz FH
eLIFE
​
Featured in: Biofilms: Flipping the switch
Pierrat X and Persat A
eLIFE

A slow conformational switch in the BMAL1 transactivation domain modulates circadin rhythms.
Gustafson CL, Parsley NC, Asimgil H, Lee HW, Ahlbach C, Michael AK, Williams OL, Xu H, Davis TL, Liu AC and Partch CL
Molecular Cell
(2017) Vol. 66: 447-457
​
Featured in: A flick of the tail keeps the circadian clock in line. Narasimamurthy R and Virshup DM
Molecular Cell Vol. 66: 437-438


The assembly and function of bHLH-PAS heterodimers.
Fribourgh JL and Partch CL
Proceedings of the National Academy of Science USA
(2017) Vol. 114: 5330-5332
​
Commentary on: Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex. Soek SH, Lee W, Jiang L, Molugu K, Li Y, Park S, Bradfield CA, Xing Y.
Proceedings of the National Academy of Science USA
(2017) Vol. 114: 5431-5436

Structural basis of the day-night transition in a bacterial circadian clock.
Tseng R*, Goularte NF*, Chavan A*, Luu J, Cohen SE, Chang YG, Heisler J, Michael AK, Tripathi S, Golden SS, LiWang A, Partch CL
Science
(2017) Vol. 355: 1174-80
​
PDB coordinates for Kai complex structures:
fold-switch KaiB:KaiC CI domain – 5JWO
fold-switch KaiB:KaiC S431E hexamer (left) – 5JWQ
KaiA deltaN:fold-switch KaiB:KaiC CI domain – 5JWR
fold-switch KaiB:CikA PsR domain – 5JY5


Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1.
Michael A, Fribourgh J, Chelliah Y, Sandate C, Hura G, Schneidman-Duhovny D, Tripathi SM, Takahashi JS, Partch CL
Proceedings of the National Academy of Science USA
(2017) Vol. 114: 1560-65
​
PDB coordinates for mouse CRY1 PHR structure – 5T5X
Coordinates for HADDOCK, MultiFoXS, and FoXSDocK models available upon request.
​​

Animal Cryptochromes: Divergent roles in light perception, circadian timekeeping and beyond.
Michael A*, Fribourgh J*, Van Gelder RN, Partch CL
Photochemistry and Photobiology
(2017) Vol. 93: 128-40
Special issue in honor of Aziz Sancar, 2015 Nobel Laureate in Chemistry


Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking.
Militi S*, Maywood ES*, Sandate CR, Chesham JE, Barnard AR, Parsons MJ, Vibert JL, Joynson GM,Partch CL, Hastings MH, Nolan PM
Proceedings of the National Academy of Science USA
(2016) Vol. 113: 2756-61
SAXS profiles for WT & Edo PER2 PAS-AB domains on BioISIS.net

Cytosolic BMAL1 moonlights as a translation factor.
Michael AK, Asimgil H, Partch CL
Trends in Biochemical Science
(2015) Vol. 40: 489-90

Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C-terminus
Xu H*, Gustafson CL*, Sammons PJ, Khan SK, Parsley NC, Ramanathan C, Lee HW, Liu AC, Partch CL
Nature Structural and Molecular Biology
(2015) Vol. 22: 476-84
Featured in: Grab the wiggly tail: new insights into the dynamics of circadian clocks. Hui KY and Ripperger JA
Nature Structural and Molecular Biology (2015) Vol. 22: 435-36
Chemical shift assignments for BMAL1 and BMAL2 TADs

Cancer/Testis antigen PASD1 silences the circadian clock.
Michael AK, Harvey SL, Sammons PJ, Anderson AP, Kopalle HM, Banham AH, Partch CL
Molecular Cell
(2015) Vol. 58: 743-54
Featured in:
-
UCSC Press: Scientists discover protein that silences biological clock, Tim Stephens
-
Quanta Magazine: How the body's trillions of clocks keep time, Veronique Greenwood

Analysis of protein stability and ligand interactions by thermal shift assay.
Huynh K and Partch CL
Current Protocols in Protein Science
(2015) Vol. 79: 28.9.1-14
Additional information on acquiring and processing thermal shift data available on Resources page

Coiled-coil coactivators play a structural role mediating interactions in hypoxia-inducible factor heterodimerization.
Guo Y, Scheuermann TH, Partch CL, Tomchick DR, Gardner KH
Journal of Biological Chemistry
(2015) Vol. 290: 7707-21

Emerging models for the molecular basis of mammalian circadian timing.
Gustafson CL and Partch CL
Biochemistry
(2015) Vol. 54: 134-49

Antibacterial membrane attack by a pore-forming intestinal C-type lectin.
Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D, Propheter DC, Rizo J, Grabe M, Jiang QX, Hooper LV
Nature
(2014) Vol. 505: 103-7

Molecular architecture of the mammalian circadian clock.
Partch CL, Green CB, Takahashi JS
Trends in Cell Biology
(2014) Vol. 24: 90-9


Regulating the ARNT/TACC3 axis: multiple approaches to manipulating protein/protein interactions with small molecules.
Guo Y, Partch CL, Key J, Card PB, Pashkov V, Patel A, Bruick RK, Wurdak H, Gardner KH
ACS Chemical Biology
(2013) Vol. 8: 626-35

bHLH-PAS proteins: functional specification through modular domain architecture.
Michael AK and Partch CL
OA Biochemistry
(2013) Vol. 1: 16-21
